Vous êtes ici : Enigmes mathématiques > Aleatoire

30 énigmes mathématiques au hasard 

#12 Niveau 4 - L'échiquier Note : -203         -2 -1 +1 +2
Combien de carrés peut-on compter sur un échiquier de 1999 cases sur 1999?

(Notez bien que le décompte doit être fait en comptant tous les carrés différents mais de même taille.)
Voir la réponse
#20 Niveau 2 - Les notes Note : -366         -2 -1 +1 +2
Un père donne à ses enfants autant de billets de 10 € que leur note de la composition de la semaine (notée sur 20). Après une semaine pourtant, les quatre enfants possédaient chacun la même somme : en effet, Régis avait 4 billets en plus, Marion 4 billets en moins, Solange avait multiplié le nombre de ses billets par 4 alors qu'il ne restait plus à Pierre que le quart de ses pièces.

Quelles étaient les notes des enfants lors de leur composition ?
Voir la réponse
#33 Niveau 2 - Les petits fours Note : 206         -2 -1 +1 +2
Un pâtissier a fait un kilogramme de petits fours de plus de 10g chacun. Il désire les ranger dans une boîte; mais il s'aperçoit que s'il veut les mettre par rangée de deux, de trois, de quatre, de cinq ou de six, il lui en reste un à chaque fois.

Combien a-t-il fait de petits fours ?
Voir la réponse
#10 Niveau 2 - La course Note : -410         -2 -1 +1 +2
Deux coureurs font un 100 mètres. Le premier arrive avec 10 mètres d'avance sur le deuxième. Pour la course suivante, avec combien de mètres de retard le premier coureur doit-il partir ?
Voir la réponse
#32 Niveau 2 - Fausse démonstration Note : -255         -2 -1 +1 +2
Nous allons ici démontrer la propriété suivante : "N points quelconques du plan sont toujours alignés"
- Cela est vrai pour N = l et N = 2
- Supposons maintenant le propriété vrai pour N quelconque et montrons qu'elle est vrai pour N+1 points.
Soient A1, A2, ... An, An+1 points du plan.
D'après l'hypothèse de récurrence, les n points 1,. .,An sont alignés sur une droite que l'on appellera D.
Toujours d'aprés l'hypothèse de récurrence les n points A2,. .,An+1 sont alignés sur une droite que l'on appellera D'.
Or D et D' contiennent toutes les deux les points A2 et An, elles sont donc confondues et donc les n+1 points Al, An, An+l sont alignés!

Cette propriété est bien entendu fausse, mais où est l'erreur ?
Voir la réponse
#37 Niveau 1 - Les craies Note : -267         -2 -1 +1 +2
Avec 3 bouts de craie, un professeur peut reconstituer une craie entiere.

Combien de craies peut-il reconstituer avec 11 bouts de craies ?
Voir la réponse
#16 Niveau 4 - Les sabliers Note : 720         -2 -1 +1 +2
Le père fourras pose une question très difficile a un candidat de Fort Boyard. Il décide de lui laisser 9 minutes pour répondre ! Cependant, il ne dispose que d'un sablier de 4 minutes et un autre sablier de 7 minutes.
Comment faire pour mesurer 9 minutes avec des 2 sabliers ?
Voir la réponse
#31 Niveau 1 - Madame Jessie Note : -215         -2 -1 +1 +2
Madame Jessie a acheté 13 kilos de légumes et a dépensé 85,55 €.

Les légumes disponibles sur le marché sont les suivants :
- Carottes : 6,15 € le kilo
- Navets : 7,60 € le kilo
- Pomme de terre : 4,40 € le kilo
- Poireaux : 9,50 € le kilo

Combien de kilos de chaque légume a-t-elle acheté, sachant qu'elle n'a pris que des kilos entiers ?
Voir la réponse
#29 Niveau 3 - Cryptogramme Note : 33         -2 -1 +1 +2
On représente A, B & C par des chiffres. (Par exemple si A = 1 et B = 2, alors AB + A = 12 + 1 = 13)

Trouvez A, B & C pour former la somme suivante : AA + BB + CC = ABC.
Voir la réponse
#27 Niveau 3 - Le collectioneur de tableau Note : 55         -2 -1 +1 +2
Pour honorer ses dettes de jeu, un collectionneur de tableaux est dans l'obligation de vendre, en plusieurs fois, de nombreuses toiles qu'il possède.

Il vend le tiers de sa collection à un riche amateur, mais donne deux Monnet et deux Renoir à son fils.

Puis il vend le tiers des tableaux restants, et offre 3 Picasso à sa fille.

Un an après, il est de nouveau dans l'obligation de se séparer d'un tiers des tableaux restant et il offre un Matisse, un Degas et deux Derain à sa filleule.

Puis à nouveau relancé par ses créanciers, il met, la mort dans l'âme, une dernière fois en vente un tiers du reste de sa collection et décide d'offrir à une oeuvre de charité deux Modigliani et un Soutine. Il lui reste alors, pour toute collection, deux Sisley, quatre Seurat et trois Daumier.

Combien ce richissime collectionneur possédait-il de tableaux au départ ?
Voir la réponse
#24 Niveau 3 - Les fruits Note : -101         -2 -1 +1 +2
Martin achète ses fruits à la pièce. Aujourd'hui, il a pris des pommes, des oranges et des kiwis.

De chacun, il en a acheté autant que son prix à l'unité : par exemple, 4 fruits à 4 €, 6 à 6 €...

Chaque sorte de fruit coûte un prix différent. Il a payé 139 € en tout.

Combien aurait-il payé s'il n'avait pris qu'un fruit de chaque sorte ?
Voir la réponse
#25 Niveau 1 - Le nouvel an Note : 474         -2 -1 +1 +2
Nous étions 43 à célébrer le nouvel an, et le bar a fonctionné non-stop. Le bar servait du champagne, du whisky et du jus de fruit. En effet, 38 personnes ont bu du champagne, et 29 du whisky, et nous étions 25 à boire un peu des deux...

Combien d'entre nous n'ont bu que du jus de fruit ?
Voir la réponse
#5 Niveau 3 - L'opération du cauchemar Note : 324         -2 -1 +1 +2
Essayez d'obtenir le nombre 28 a l'aide des chiffres 2, 3, 4 et 5 en utilisant que les opérations élémentaires (addition, soustraction, multiplication et division).
Attention, il faut obligatoirement utiliser une et une unique fois chacun des chiffres 2, 3, 4 et 5.
Voir la réponse
#6 Niveau 2 - Les triangles Note : 593         -2 -1 +1 +2
Combien d'allumettes faut-il pour faire 4 triangles équilatéraux de côté une allumette ?
Voir la réponse
#4 Niveau 3 - Le mauvais compte Note : 335         -2 -1 +1 +2
Trois militaires viennent boire un verre à la terrasse d'un bistrot, et demandent l'addition. Le garçon de café encaisse 12 euros, et les porte à son patron. Celui-ci, qui désire faire la promotion de son établissement auprès du régiment voisin, décide une petite ristourne et demande au garçon de leur rendre 5 euros. Mais le garçon de café, qui ne partage pas la même sympathie que son patron à l'égard des militaires, et qui de toute façon, a beaucoup de mal à répartir 5 euros entre 3 personnes, décide de n'en rendre que 3 et de garder 2 euros pour lui. Au bilan, chaque militaire a payé 4 euros, mais s'est vu rendre 1 euro. Chacun a donc déboursé 3 euros, ce qui fait un total de 9 euros. Si l'on ajoute les 2 euros que le garçon a gardé pour lui, cela monte à 11 euros.
Mais ou est passé le 12ème euro ?
Voir la réponse
#35 Niveau 3 - Opérations élémentaires Note : -283         -2 -1 +1 +2
Comment obtenir 1, en utilisant une fois et une seule chacun des dix chiffres de 0 à 9 et ne faisant intervenir que des opérations élémentaires ?

(Attention, si devait utiliser juste les chiffres 1, 2 et 3, on pourrait réaliser les opérations suivantes : 1*2+3, 1/2+3, 12/3, 321, 32+1, ...)
Voir la réponse
#19 Niveau 2 - Le loup, la chèvre et le chou Note : 572         -2 -1 +1 +2
Un homme devait faire traverser un loup, une chèvre et un très gros chou dans un bateau.
Le bateau était tellement petit, qu'il ne pouvait embarquer qu'un des trois et lui-même pour chaque traversée.

Comment peut-il faire pour les faire traverser tous les trois sans laisser l'occasion au loup de manger la chèvre ou à la chèvre de manger le chou ?
Voir la réponse
#11 Niveau 4 - Cent-le-vieux Note : 165         -2 -1 +1 +2
Le village de Cent-le-Vieux compte exactement 100 habitants.Le plus âgé est né en 1900 et tous les habitants sont nés une année différente, mais tous le 1 er janvier.
En 1999, la somme des quatre chiffres de l'année de naissance de Jules est égale à son âge.

Quel est l'âge de Jules?
Voir la réponse
#13 Niveau 3 - Somme de nombres impairs Note : 29         -2 -1 +1 +2
Soit 13579, 13597, 13759, ... 97531 les nombres de cinq chiffres que l'on peut composer en utilisant une fois et une seule tous les chiffres impairs.

Quelle est la somme de tous ces nombres ?
Voir la réponse
#21 Niveau 2 - L'age du pere Note : 224         -2 -1 +1 +2
L'an dernier, mon père avait le double de mon âge. Cette année, nos deux âges s'expriment par les deux mêmes chiffres, mais écrits dans un ordre différent.

Quel est l'âge de mon père ?
Voir la réponse
#26 Niveau 4 - L'attente Note : 3         -2 -1 +1 +2
La scène représente un hall de la gare de Lyon. Monsieur Pichon, carrossier, emmène son épouse Sophie et sa fille Lucie dans les Alpes. Il va s'occuper de l'enregistrement des bagages. Madame et Mademoiselle Pichon l'attendent là; Tandis que les deux jeunes gens amoureux de Lucie, Armand et Daniel bavardent sans arrêt...
Au bout d'un certain temps, Monsieur Pichon revient.

Combien de temps a duré l'atttente totale sachant que si Daniel avait parlé quatre fois moins, Armand aurait pu parler une fois et demie de plus, et que, si Mr Pichon revenant deux minutes plus tôt, Daniel avait cependent parlé deux fois plus, Armand aurait dû parler six fois moins... ? ( mal à la tête ? )
Voir la réponse
#14 Niveau 3 - 2001, l'odyssée des chiffres Note : -385         -2 -1 +1 +2
Dans la suite de chiffres 122333444455555..., chaque entier est écrit autant de fois que sa valeur.

Quel est le 2001ème chiffre?
Voir la réponse
#9 Niveau 1 - L'ours Note : -236         -2 -1 +1 +2
Un chasseur aperçoit en face de lui, exactement au nord, un grand ours qui ne prête pas attention à lui. Il lui tire dessus immédiatement et la bête, blessée, s'écroule sur le sol. Le chasseur fait alors 100 mètres à l'est, et retire exactement au nord sur l'ours pour le tuer.

De quel couleur était cet ours ?
Voir la réponse
#1 Niveau 2 - La corde Note : 509         -2 -1 +1 +2
Une corde brule irrégulièrement en une heure.

Comment faire pour mesure une demi heure avec cette même et unique corde ?
Voir la réponse
#22 Niveau 1 - Le chapeau de Mr Hodeform Note : -273         -2 -1 +1 +2
M. Hodeform et Mme Bérébask sont en bateau. Ce bateau remonte la rivière à une vitesse constante qui est, par rapport à l'eau, de 4,5 Km/h. La vitesse du courant est elle de 0,5 Km/h

Il est 15 heures juste, lorsque le chapeau de monsieur tombe à l'eau. Mais il ne s'en rend compte qu'à 15h06. Il fait maintenant demi-tour (on suppose que cette manoeuvre est "instantanée").

Combien de temps aura-t-il été privé de son couvre-chef ?
Voir la réponse
#17 Niveau 1 - Fumer dans la savane Note : 497         -2 -1 +1 +2
Vous êtes dans la savane, vous n'avez ni pipe, ni tabac, ni moyen de faire du feu, juste un fusil et deux cartouches.

Comment faire pour fumer une pipe ? (cherchez pas trop, c'est de l'humour...)
Voir la réponse
#30 Niveau 1 - Les cinq amis Note : 51         -2 -1 +1 +2
Cinq amis veulent acheter une friandise pour une amie, mais comme le marchand n'a pas de monnaie, ils décident de donner chacun une pièce pour faire exactement l'appoint. Comme par hasard, la friandise choisie est justement la seule dont ils ne peuvent pas atteindre le prix exact.

Quelle est-elle ?

Albert : 2 €, 50 c, 5 c
Bruno : 2 €, 1 €
Charles : 5 €, 50 c, 10 c
Damien : 10 €, 1 €, 50 c
Emile : 1 €, 50 c, 20 c

Les friandises :
Pain au chocolat : 3 €
Croissant : 3,15 €
Petit cochon : 3,30 €
Eclair : 3,80 €
Tarte aux fraises : 3,40 €
Voir la réponse
#41 Niveau 1 - Codage binaire Note : -331         -2 -1 +1 +2
Pourquoi dans certains cas on peut écrire 1+1 = 10 ?
Voir la réponse
#23 Niveau 2 - Equation à lettres Note : 139         -2 -1 +1 +2
On sait que :
2A + B = 2C + A = 2B + 2C = 3B + A = 10
A partir de ces égalités, trouvez la valeur de chaque lettre...
Voir la réponse
#7 Niveau 1 - Mal appris Note : -855         -2 -1 +1 +2
Un élève de CM1 sort d'un cours en s'exclamant : "Donc 10 égal 509 !".
Le professeur lui dit qu'il a en un sens raison, mais seulement sur le papier.

De quoi parlait le cours que l'élève venait de suivre ?
Voir la réponse